1,203 research outputs found

    Fault diagnosis of operational synchronous digital systems

    Get PDF
    Diagnosing faults on operational synchronous digital system

    Sensitivity analysis Progress report, 1 Mar. - 1 May 1967

    Get PDF
    Flow graph technique for calculating sensitivity coefficients for electric network

    Fourier Based Three Phase Power Metering System

    Get PDF
    The increased application of higher frequency nonlinear loads, such as electronic fluorescent ballasts and higher speed adjustable drives, has resulted in the need to monitor the higher power system harmonics which were largely ignored in earlier power monitors. Addressing this need requires a meter with substantially higher sample rate and greater computational power. This paper describes a zero-blind, three-phase, three-element power meter that samples three voltages and four currents at 256 points per cycle. The instrument relies on the FFT to compute real and reactive power at each harmonic and reports total real, reactive, and distortion power on each phase. The innovative design is based on a multiprocessor chip which incorporates a DSP for acquisition and point metering, a CISC processor for floating point summary data, and a RISC processor for interface to support communications with the host PC. The paper concludes with a system evaluation on highly distorted industrial power system waveforms

    The effect of precipitation and application rate on dicyandiamide persistence and efficiency in two Irish grassland soils

    Get PDF
    peer-reviewedThe nitrification inhibitor dicyandiamide (DCD) has had variable success in reducing nitrate (NO3-) leaching and nitrous oxide (N2O) emissions from soils receiving nitrogen (N) fertilisers. Factors such as soil type, temperature and moisture have been linked to the variable efficacy of DCD. Since DCD is water soluble it can be leached from the rooting zone where it is intended to inhibit nitrification. Intact soil columns (15 cm diameter by 35 cm long) were taken from luvic gleysol and haplic cambisol grassland sites and placed in growth chambers. DCD was applied at 15 or 30 kg DCD ha-1, with high or low precipitation. Leaching of DCD, mineral N and the residual soil DCD concentrations were determined over eight weeks High precipitation increased DCD in leachate and decreased recovery in soil. A soil x DCD rate interaction was detected for the DCD unaccounted (proxy for degraded DCD). In the cambisol degradation of DCD was high (circa 81%) and unaffected by DCD rate. In contrast DCD degradation in the gleysol was lower and differentially affected by rate, 67 and 46% for the 15 and 30 kg ha-1 treatments, respectively. Differences DCD degradation rates between soils may be related to differences in organic matter content and associated microbiological activity. Variable degradation rates of DCD in soil, unrelated to temperature or moisture, may contribute to varying DCD efficacy. Soil properties should be considered when tailoring DCD strategies for improving nitrogen use efficiency and crop yields, through the reduction of reactive nitrogen loss.This research was financially supported under the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Food and the Marine under grants 07519 and 07545

    Modulation of Cardiac Performance by Motor Protein Gene Transfer

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75444/1/annals.1420.011.pd

    Cutting and Shuffling a Line Segment: Mixing by Interval Exchange Transformations

    Full text link
    We present a computational study of finite-time mixing of a line segment by cutting and shuffling. A family of one-dimensional interval exchange transformations is constructed as a model system in which to study these types of mixing processes. Illustrative examples of the mixing behaviors, including pathological cases that violate the assumptions of the known governing theorems and lead to poor mixing, are shown. Since the mathematical theory applies as the number of iterations of the map goes to infinity, we introduce practical measures of mixing (the percent unmixed and the number of intermaterial interfaces) that can be computed over given (finite) numbers of iterations. We find that good mixing can be achieved after a finite number of iterations of a one-dimensional cutting and shuffling map, even though such a map cannot be considered chaotic in the usual sense and/or it may not fulfill the conditions of the ergodic theorems for interval exchange transformations. Specifically, good shuffling can occur with only six or seven intervals of roughly the same length, as long as the rearrangement order is an irreducible permutation. This study has implications for a number of mixing processes in which discontinuities arise either by construction or due to the underlying physics.Comment: 21 pages, 10 figures, ws-ijbc class; accepted for publication in International Journal of Bifurcation and Chao

    Bifurcations in the Space of Exponential Maps

    Full text link
    This article investigates the parameter space of the exponential family zexp(z)+κz\mapsto \exp(z)+\kappa. We prove that the boundary (in \C) of every hyperbolic component is a Jordan arc, as conjectured by Eremenko and Lyubich as well as Baker and Rippon. In fact, we prove the stronger statement that the exponential bifurcation locus is connected in \C, which is an analog of Douady and Hubbard's celebrated theorem that the Mandelbrot set is connected. We show furthermore that \infty is not accessible through any nonhyperbolic ("queer") stable component. The main part of the argument consists of demonstrating a general "Squeezing Lemma", which controls the structure of parameter space near infinity. We also prove a second conjecture of Eremenko and Lyubich concerning bifurcation trees of hyperbolic components.Comment: 29 pages, 3 figures. The main change in the new version is the introduction of Theorem 1.1 on the connectivity of the bifurcation locus, which follows from the results of the original version but was not explicitly stated. Also, some small revisions have been made and references update

    Trace Complexity of Chaotic Reversible Cellular Automata

    Full text link
    Delvenne, K\r{u}rka and Blondel have defined new notions of computational complexity for arbitrary symbolic systems, and shown examples of effective systems that are computationally universal in this sense. The notion is defined in terms of the trace function of the system, and aims to capture its dynamics. We present a Devaney-chaotic reversible cellular automaton that is universal in their sense, answering a question that they explicitly left open. We also discuss some implications and limitations of the construction.Comment: 12 pages + 1 page appendix, 4 figures. Accepted to Reversible Computation 2014 (proceedings published by Springer

    Stretching and folding versus cutting and shuffling: An illustrated perspective on mixing and deformations of continua

    Full text link
    We compare and contrast two types of deformations inspired by mixing applications -- one from the mixing of fluids (stretching and folding), the other from the mixing of granular matter (cutting and shuffling). The connection between mechanics and dynamical systems is discussed in the context of the kinematics of deformation, emphasizing the equivalence between stretches and Lyapunov exponents. The stretching and folding motion exemplified by the baker's map is shown to give rise to a dynamical system with a positive Lyapunov exponent, the hallmark of chaotic mixing. On the other hand, cutting and shuffling does not stretch. When an interval exchange transformation is used as the basis for cutting and shuffling, we establish that all of the map's Lyapunov exponents are zero. Mixing, as quantified by the interfacial area per unit volume, is shown to be exponentially fast when there is stretching and folding, but linear when there is only cutting and shuffling. We also discuss how a simple computational approach can discern stretching in discrete data.Comment: REVTeX 4.1, 9 pages, 3 figures; v2 corrects some misprints. The following article appeared in the American Journal of Physics and may be found at http://ajp.aapt.org/resource/1/ajpias/v79/i4/p359_s1 . Copyright 2011 American Association of Physics Teachers. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the AAP
    corecore